

IVD-Merkblatt Nr. 9 Ausgabe Januar 2011

Spritzbare Dichtstoffe in der Anschlussfuge für Fenster und Außentüren

Grundlagen für die Ausführung

Seite 1 von 45

Inhaltsverzeichnis

Inhaltsverzeichnis

0 Grundsatzaussagen zu Normung und Qualität

Gesetzlicher Rahmen Qualitätsanforderungen

- 1 Vorwort
- 2 Geltungsbereich
- 3 Grundlagen
 - 3.1 Notwendigkeit zur Trennung zwischen Raum- und Außenklima
 - 3.2 Funktionsebenen und Funktionsbereich

4 Einwirkungen auf das Fensterelement und die Anschlussfugen

- 5 Die Anschlussfuge
 - 5.1 Definition
 - 5.2 Fugenausbildung
 - 5.3 Fugendimensionierung
 - 5.4 Nicht fachgerechte Fugenausbildung
- 6 Die Hohlraumausfüllung mit Dämmstoffen

7 Einstufung und Qualitätsanforderungen der Dichtstoffe nach DIN EN 15651-1

- 7.1 Klassifizierung der Dichtstoffe nach DIN EN 15651-1
- 7.2 IVD Qualitätsanforderungen im Vergleich zur DIN EN 15651-1
- 8 Die Dichtstoffe
 - 8.1 Allgemeines
 - 8.2 Dichtstoffauswahl
 - 8.3 Anforderungen an die Dichtstoffe
- 9 Die Hilfsmittel
 - 9.1 Hinterfüllmaterialien
 - 9.2 Glättmittel

10. Selbstreinigendes Glas im Fensterbau

- 10.1 Einleitung und Wirkungsweise
- 10.2 Dichtstoffe in Verbindung mit selbstreinigendem Glas
- 10.3 Qualitätsanforderungen an Dichtstoffe in Verbindung mit selbstreinigendem Glas

11 Ausführung der Abdichtung

- 11.1 Bauliche Voraussetzungen
- 11.2 Reihenfolge der Arbeitsschritte
- 11.3 Beschreibung der Arbeitsschritte
- 11.4 Besondere Hinweise zur inneren Abdichtung

12 Dichtstoffe und Beschichtungen (Anstriche)

12.1 Verträglichkeit mit der Oberflächenbeschichtung

Seite 2 von 45

- 12.2 Voraussetzungen an vorhandene Beschichtungen
- 12.3 Das Überstreichen von Dichtstoffen
- 13 Übrige Anschlüsse an Fenstern und Außentüren
 - 13.1 Schwellenausbildungen
 - 13.2 Abdichtungen an Fensterbänken
 - 13.3 Abdichtungen an Rollladenkästen und Vorbaurollläden
- 14 Beschreibung der Dichtstoffe
- 15 Aufzeichnungen
 - 15.1 Baustellenprotokoll (Fertigstellungsmeldung)
- 16 Einsatz von spritzbaren Dichtstoffen und Kombination mit anderen Abdichtungssystemen
- 17 Ausschreibungsbeispiele für die komplette Ausführung der Bauanschlussfuge mit spritzbaren Dichtstoffen
 - 17.1 Fenster/Außentür-Anschlussfugenbereich außen mit spritzbaren Dichtstoffen abdichten.
 - 17.2 Fugenzwischenraum zwischen Außen- und Innenabdichtung mit Dämm-Material ausfüllen.
 - 17.3 Fenster/Außentür-Anschlussfugenbereich innen mit spritzbaren Dichtstoffen abdichten.
- 18 Literaturverzeichnis

0 Grundsatzaussagen zu Normung und Qualität

Gesetzlicher Rahmen

Die folgenden Ausführungen beziehen sich auf die voraussichtlich 2014 in Kraft tretende Norm EN 15651.

Die folgend beschriebenen aus der Norm resultierenden Anforderungen (z.B. Einsatz CE-Kennzeichnung) treten somit ebenfalls erst voraussichtlich 2014 mit der Norm in Kraft.

Fugendichtstoffe unterliegen als Bauprodukt der Europäischen Bauproduktenrichtlinie (in Deutschland durch das Bauproduktengesetz in nationales Recht umgesetzt). Bauprodukte sind definitionsgemäß dazu bestimmt dauerhaft im Bauwerk zu verbleiben. Die Bauproduktenrichtlinie bildet die gesetzliche Grundlage zur Definition der Anforderungen an eine generelle Brauchbarkeit der Produkte und der Beseitigung technischer Handelshemmnisse in der EU.

Die Richtlinie selbst gibt nur Ziele vor, aber nicht wie sie zu erreichen sind. Diese Ziele sind in den sechs wesentlichen Anforderungen zusammengefasst:

- 1. Mechanische Festigkeit und Standsicherheit
- 2. Brandschutz
- 3. Hygiene, Gesundheit und Umweltschutz
- 4. Nutzungssicherheit
- Schallschutz
- 6. Energieeinsparung und Wärmeschutz

Diese wesentlichen Anforderungen bilden die Grundlage zur Erstellung sogenannter "harmonisierter" Normen. Solche Normen werden auf Grund eines Mandats der Europäischen Kommission von CEN erstellt. Die notwendige Übereinstimmung eines Bauprodukts mit der harmonisierten Norm wird durch das CE-Zeichen dokumentiert. Ohne CE-Zeichen darf ein Produkt nicht in den Verkehr gebracht werden! Bei der Erarbeitung der harmonisierten Normen müssen die unterschiedlichen Gegebenheiten der Mitgliedsstaaten durch Einführung entsprechender Klassen berücksichtigt werden, damit entsprechende lokale Produkte weiterhin in Verkehr gebracht werden können, d.h. das CE-Zeichen zeigt nur eine generelle Brauchbarkeit zum Vertrieb in der EU an, ein hoher Qualitätsstandard ist damit nicht notwendigerweise verbunden.

Die harmonisierten Normen werden als EN-Normen erstellt und dann als DIN-EN- Normen in Deutschland übernommen. Eventuell entgegenstehende nationale Normen müssen ab diesem Zeitpunkt zurückgezogen werden. Allerdings können weitergehende Teile der

Seite 4 von 45

nationalen Normen als sogenannte "Restnormen" weiter bestehen bleiben. Falls damit wesentliche nationale baurechtliche Regelungen betroffen sind, darf ein diesen Regelungen nicht entsprechendes Produkt trotz CE-Zeichen in diesem Land nicht verwendet werden.

Qualitätsanforderungen

Die Qualitätsanforderungen an spritzbare Dichtstoffe werden in der DIN EN 15651 Teil 1 bis 4 gestellt:

- Teil 1: Dichtstoffe für Fassadenelemente
- Teil 2: Fugendichtstoffe für Verglasungen
- Teil 3: Dichtstoffe für Fugen im Sanitärbereich
- Teil 4: Fugendichtstoffe für Fußgängerwege

Dabei ist darauf hinzuweisen, dass die DIN EN 15651 lediglich Mindestanforderungen an die Dichtstoffe stellt, um eine gewisse Sicherheit der Abdichtung zu gewährleisten. Die langjährigen Erfahrungen des IVD in der Praxis in Bezug auf die vorhandenen Bautoleranzen, Fugenkonstruktionen, Belastungen auf die Fuge und ihre Abdichtung sowie die Vielzahl der Dichtstoffqualitäten zeigen jedoch, dass die Qualitätsanforderungen des IVD an einzelne Eigenschaften und in einzelnen Anwendungsgebieten z.T. deutlich höher ist als in den einzelnen Teilen des DIN EN 15651 verlangt.

Am Beispiel des Volumenschwundes soll das an dieser Stelle verdeutlicht werden:

- Nach den Anforderungen des IVD darf ein Dichtstoff für den Sanitärbereich einen Volumenschwund von max. 10 % besitzen.
- Die DIN EN 15651-3 lässt qualitätsbezogen eine Volumenschwund von bis zu 55 %

Was bedeutet ein erhöhter Volumenschwund?

- 1. Erhöhte Belastung durch stehendes Wasser/stauende Feuchtigkeit
- 2. Stärkere Gefahr einer Schimmelpilzbildung
- 3. Verstärkte Schmutzablagerung und erschwerte Reinigungsmöglichkeit
- 4. Mangelhafte Fugendimensionierung (Verhältnis Fugenbreite zur Tiefe des Dichtstoffs).
- 5. Beeinträchtigung der Zulässigen Gesamtverformung und des Dehnspannungswertes auf Grund der mangelhaften Dimensionierung.

Der jeweils komplette Vergleich der Qualitätsanforderungen des IVD zu den relevanten Teilen der DIN EN 15651 ist in den betreffenden IVD-Merkblättern unter dem Punkt Einstufung und Qualitätsanforderungen der Dichtstoffe nach DIN EN 15651 aufgeführt.

1 Vorwort

Seit Februar 2002 (Änderung April 2007) ist die neue Energieeinsparverordnung (EnEV) in Kraft, die im § 5 die luftdichte Abdichtung der gesamten Gebäudehülle zwingend vorschreibt. Diese Forderung bezieht sich auf alle Fugen, Durchdringungen und Baukörperanschlüsse wie z. B. zwischen Fenstern bzw. Außentüren und den angrenzenden Bauteilen.

Mit dieser Zielstellung aus der EnEV werden vorrangig die weitere Senkung des Heizenergieverbrauches und die Verringerung von Bauschäden angestrebt. Luftundichtheiten an Fugen stellen bauphysikalisch immer noch eine erhebliche Schwachstelle an Gebäuden dar und verursachen ungewollte und teilweise schwer kontrollierbare Wärmeverluste und Feuchtigkeitsschäden.

Die Luftdichtheit der Gebäudehülle wird deshalb zukünftig als ein wesentliches Qualitätskriterium bei der Bauabnahme gelten und kann durch das Blower-Door-Messverfahren überprüft werden.

Eine luftdichte Abdichtung der Fensteranschlussfugen auf der Raumseite, ausgeführt nach den anerkannten Regeln der Technik, dient zur weitgehenden Vermeidung des Eindringens feuchter Raumluft in die Anschlussfuge und leistet zusätzlich einen nützlichen Beitrag zur weiteren Einsparung von Heizenergie.

Die baukonstruktiven Anschlussbedingungen zwischen Fenster und Baukörper sind in der Praxis sehr vielfältig, so dass es keine Universallösung für Abdichtungen auf der Raumseite und der Außenseite gibt.

Die Dichtstoffindustrie bietet eine breite Palette praxisbewährter spritzbarer Dichtstoffe an, die – zum Teil auch in Kombination mit anderen Abdichtmaterialien – für die meisten Anwendungsfälle bestens geeignet sind.

Ziel dieses Merkblattes ist es, neben den Planern vor allem dem Fensterbauer und Verarbeiter von spritzbaren Dichtstoffen Informationen und Hinweise zu vermitteln, wie eine regelgerechte Abdichtung von Fensteranschlussfugen auszuführen ist und welche Anforderungen von den dafür einzusetzenden Dichtstoffen zu erfüllen sind.

Die Luftdichtheit der Innenfugen und die Schlagregendichtheit der Außenfugen kann problemlos mit spritzbaren Dichtstoffen erzielt werden, sofern die Grundlagen dieses Merkblattes bei der Verarbeitung beachtet werden.

Seite 7 von 45

2 Geltungsbereich

Das Merkblatt behandelt die Abdichtung von Anschlussfugen zwischen Fenstern bzw. Außentüren und deren angrenzenden Bauteilen mit spritzbaren Dichtstoffen.

Es gilt auch für die Kombination von spritzbaren Dichtstoffen mit anderen Abdichtungssystemen laut Tabelle 8.

Es gilt nicht für andere Abdichtungssysteme, wie z.B. imprägnierte Dichtungsbänder aus Schaumkunststoff, Bauabdichtungsfolien und andere Dichtungsbänder.

Es gilt als Ergänzung zu z.B. folgenden bestehenden Regelwerken:

Leitfaden zur Planung und Ausführung der Montage von Fenstern und Haustüren: Dezember 2006

Der Einbau von Fenstern, Fassaden und Haustüren mit Qualitätskontrolle durch das RAL-Gütezeichen.

RAL-Gütegemeinschaften Fenster- und Haustüren 60594 Frankfurt am Main

Leitfaden Montage von Fenstern und Haustüren mit Anwendungsbeispielen, Technische Richtlinie Nr. 20: 2007

Technische Richtlinie des Glaserhandwerks

In Zusammenarbeit mit

Bundesinnungsverband des Glaserhandwerks

Bundesverband Holz und Kunststoff

Verband der Fenster- und Fassadenhersteller e.V.

RAL – Gütegemeinschaft Fenster und Haustüren e.V.

Verlagsanstalt Handwerk GmbH 60594 Düsseldorf

Anmerkung: Die beiden o.g. Richtlinien sind inhaltlich identisch.

VFF-Merkblatt: 12/2001

Wärmetechnische Anforderungen an Baukörperanschlüsse für Fenster.

Verband der Fenster- und Fassadenhersteller e.V.

RAL-Gütegemeinschaft Holzfenster und Haustüren e.V.

60594 Frankfurt am Main

Seite 8 von 45

3 Grundlagen

3.1 Notwendigkeit zur Trennung zwischen Raum- und Außenklima

Im Winter ist die absolute Luftfeuchtigkeit in der Regel raumseitig höher als außenseitig, d. h. raumseitig stellt sich ein höherer Wasserdampfteildruck ein als außenseitig. Bei nicht abgedichteten, bzw. nicht fachgerecht abgedichteten Fugen führt dieses Dampfdruckgefälle zu einem Wasserdampfstrom in den Funktionsbereich hinein. Gleichzeitig herrscht im Fugenbereich ein Temperaturgefälle, so dass die eingedrungene feuchte Raumluft abgekühlt wird und als Folge bei Unterschreiten der Taupunkttemperatur Tauwasser (Kondensat) anfällt.

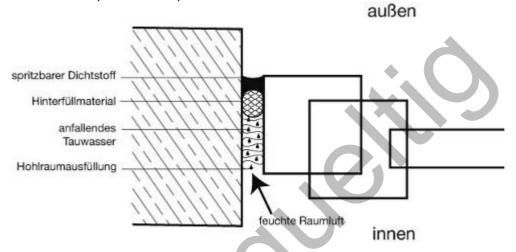


Bild 1: Nicht fachgerechte Abdichtung an der Raumseite.

Die Folge davon ist eine Durchfeuchtung des Baukörperanschlusses mit erhöhtem Wärmeverlust, da ein zusätzlicher Wärmebrückeneffekt entsteht. Außerdem wird der Schallschutz der Dämmung vermindert. Denn das in den Baukörperanschluss eingedrungene Wasser leitet die Wärme und den Schall besser als die trockene Dämmung. Daher muss eine fachgerechte Abdichtung der Fugen im Anschlussbereich von Fenstern und Außentüren erfolgen.

3.2 Funktionsebenen und Funktionsbereich

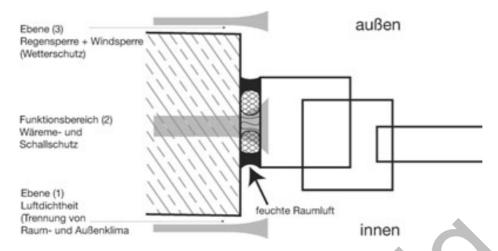


Bild 2: Funktionsebenenmodell als fachgerechte Abdichtung mit spritzbaren Dichtstoffen.

In dem Modell wird zwischen zwei Funktionsebenen (1) und (3) und dem dazwischen liegenden Funktionsbereich (2) unterschieden. Daraus wird ersichtlich, dass unterschiedliche Anforderungen an die Funktionsebenen und den Funktionsbereich gestellt werden.

Die beiden Ebenen und der dazwischen liegende Funktionsbereich müssen in der Konstruktion gegeben sein und folgenden Anforderungen genügen: Tabelle 1: Anforderungen an die Funktionsebenen

Ebene (3) Wetterschutz	Bereich (2) Funktionsbereich	Ebene (1) Trennung von Raum- und Außenklima
Die Ebene des Wetterschutzes verhindert weitgehend den Eintritt von Regenwasser (Schlagregen) von der Außenseite. Eingedrungenes Regenwasser muss kontrolliert nach außen abgeführt werden. Zugleich muss die Feuchtigkeit aus dem Funktionsbereich nach außen entweichen können.	In diesem Bereich müssen insbesondere die Eigenschaften Wärme- und Schallschutz sichergestellt werden. Der Funktionsbereich muss "trocken bleiben" und vom Raumklima getrennt sein.	Die Trennebene von Raum- und Außenklima muss über die gesamte Fläche der Bauteile und der Außenwand erkennbar sein und darf nicht unterbrochen werden. Die Konstruktion muss raumseitig luftdicht sein. Die Trennung muss in einer Ebene erfolgen, deren Temperatur- und Luftfeuchtigkeit über den für das Schimmelpilzwachstum kritischen Werten liegt.

4 Einwirkungen auf das Fensterelement und die Anschlussfugen

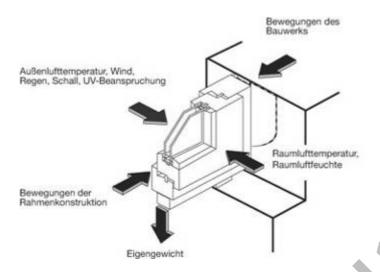


Bild 3: Schematische Darstellung der Einwirkungen auf das Fensterelement und die Anschlussfugen.

Tabelle 2: Zugeordnete Beanspruchungen.

Einwirkungen	nwirkungen					
• von der Außenseite	Regen, Wind Temperatur-/Feuchtewechsel Sonneneinstrahlung Schall (Außenlärm)	DIN EN 12207 DIN EN 12208 DIN EN 13051 DIN 1055 ift-Richtlinie FE-05/2, Einsatzempfehlungen für Fenster- und Außentüren DIN EN 13420 DIN EN 12219 DIN 4109				
• von der Raumseite	Raumlufttemperatur Raumluftfeuchte	DIN 4108				
aus dem Bauwerk	Bauwerksbewegungen, Toleranzen	DIN 18202				
aus dem Bauteil	Längenänderungen Formänderungen Kräfte aus dem Eigengewicht	DIN 1055				

Seite 11 von 45

j	Kräfte aus der Benutzung Stoßbelastungen	DIN EN 13115 DIN EN 13049
---	--	------------------------------

5 Die Anschlussfuge

5.1 Definition

Die Anschlussfuge ist nach DIN 52460 die Fuge zwischen von Material oder Funktion unterschiedlichen Bauteilen.

5.2 Fugenausbildung

Anschlussfugen sind nach DIN 4108-7 bereits in der Planungsphase zu berücksichtigen. Anschlussfugen müssen also unter Berücksichtigung der jeweiligen Bausituation individuell geplant und ausgeführt werden.

Die Ausschreibenden haben die Planungsleistung zu erbringen.

Für die gesamte Konstruktion gilt das Prinzip "innen dichter als außen", damit sichergestellt wird, dass die in die Anschlussfuge eingedrungene Feuchtigkeit kontrolliert nach außen abgeführt wird.

Die Rahmenprofile unterliegen je nach Rahmenwerkstoff unterschiedlichen Temperaturund Feuchteänderungen während der Gebrauchsdauer. Die Raumtemperatur ist relativ gleichmäßig im Gegensatz zur Außentemperatur, die über den Tag und über das Jahr stark schwankt. Die thermisch bedingten Längenänderungen der Fensterprofile üben auf den Dichtstoff Dehn-, Stauch- und Scherbewegungen aus. Damit der Dichtstoff diese Bewegungen langfristig aufnehmen kann, wird eine definierte Dichtstoff-Dimensionierung benötigt. Da, wie oben beschrieben, die Temperatureinwirkungen innen und außen unterschiedlich sind, dehnt sich das Profil innen und außen unterschiedlich aus. Für die größeren Temperaturschwankungen im Außenbereich ist ein elastischer Dichtstoff mit einer zulässigen Gesamtverformung (ZGV) von 25% für die in Tabelle 3 angegebenen Fugenbreiten notwendig. Raumseitig kann ein Dichtstoff mit einer ZGV von ≥ 12,5 % verwendet werden.

Deshalb können innen und außen unterschiedliche Dichtstoffe eingesetzt werden.

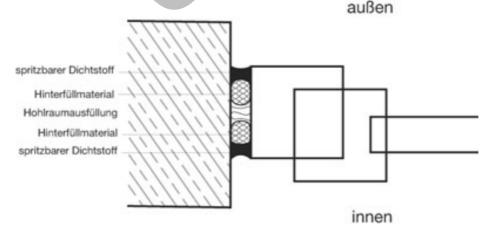


Bild 4: Fachgerechte Fugenausbildung bei stumpfem Anschlag.

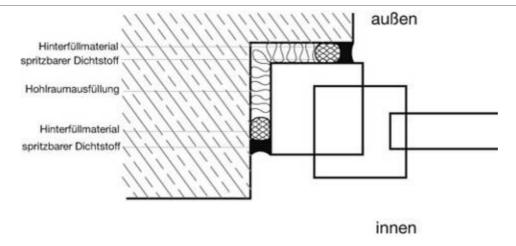


Bild 5: Fachgerechte Fugenausbildung beim Innenanschlag.

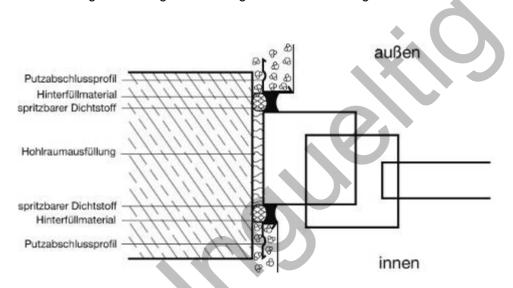


Bild 6: Fachgerechte Fugenausbildung nach erfolgtem Putzauftrag.

5.3 Fugendimensionierung

Die erforderliche Mindestfugenbreite b_F wird bestimmt durch die temperatur- und feuchtigkeitsbedingten Maßänderungen der Rahmenprofile sowie durch die ZGV des eingesetzten Dichtstoffs.

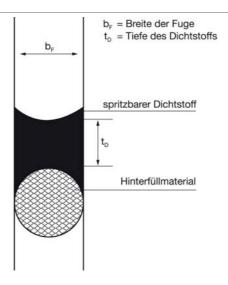


Bild 7: Prinzipskizze zur Fugendimensionierung. b_F = Breit der Fuge t_D = Tiefe des Dichtstoffs

Tabelle 3: Mindestfugenbreite b_F für Anschlussfugen

Länge der Ra	Länge der Rahmenprofile							
	bis 1,5 m	bis 2,5 m	bis 3,5 m	bis 4,5 m	bis 2,5 m	bis 3,5 m	bis 4,5 m	
Werkstoff der Fensterprofile Mindestfugenbreite für stumpfen Anschlag b _F in mm Mindestfugenbreite für Innenanschlag b _F in mm								
PVC hart (weiß)	10	15	20	25	10	10	15	
PVC hart und PMMA (dunkel) (farbig extrudiert)	15	20	25	30	10	15	20	
harter PUR- Integral- schaumstoff	10	10	15	20	10	10	15	

Holz-Metall- Fensterkonst ruktionen (hell)	10	10	15	20	10	10	15
Holz-Metall- Fensterkon- stuktionen (dunkel)	10	15	20	25	10	10	15
Aluminium- Kunststoff- Verbundprofil e (hell)	10	10	15	20	10	10	15
Aluminium- Kunststoff- Verbund- profile (dunkel)	10	15	20	25	10	10	15
Holzfenster- profile	10	10	10	10	10	10	10

Diese Mindestfugenbreiten b_F gelten auch für die Anschlussfugen im Innenbereich für Dichtstoffe mit einer ZGV ≥ 12,5 %.

Das Verhältnis zwischen der Breite des Dichtstoffes in der Fuge (bF) und der Tiefe des Dichtstoffs in der Fuge (t_D) ist in Tabelle 4 dargestellt:

Tabelle 4: Fugenbreite b_F im Verhältnis zur Tiefe des Dichtstoffs t_D (siehe Bild 7)

b _F	10	15	20	25	30	mm
t _D	8	10	12	15	15	mm

5.4 Nicht fachgerechte Fugenausbildung

In der Praxis treten häufig folgende Situationen auf, die mit spritzbaren Dichtstoffen ohne zusätzliche Maßnahmen nicht fachgerecht gelöst werden können.

Die Abbildungen 8 bis 15 zeigen Einbausituationen, bei denen jeweils eine geeignete Abdichtungsmaßnahme festzulegen ist. Gemeinsam mit dem Dichtstoffhersteller muss eine Lösungsmöglichkeit nach dem Stand der Technik gefunden werden. Zusätzlich ist es sinnvoll, nach VOB /B § 4, 3. schriftlich Bedenken anzumelden.

Abdichtungen mit Dreiflächenhaftung sind nicht in der Lage, die in der Praxis auftretenden Bewegungen dauerhaft aufzunehmen, es kommt zu Schäden.
Seite 16 von 45

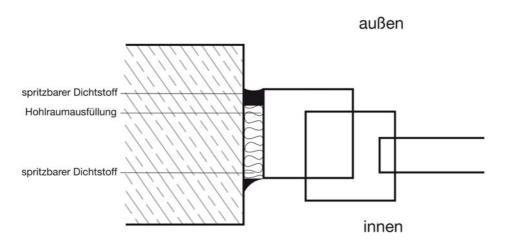


Bild 8: Durch eine zu geringe Fugenbreite $b_F \le 10$ mm wird die ZGV des Dichtstoffs überschritten. Es entsteht eine Dreiecksfuge, die nur geringe Bewegungen aufnehmen kann.

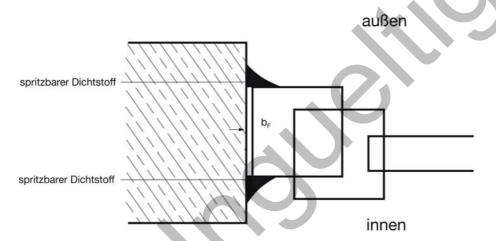


Bild 9: Keine ausreichende Fugentiefe für den Dichtstoff bei vollständigem Ausfüllen des Zwischenraumes mit Dämmstoff (siehe Punkt 5.3). Der fachgerechte Einbau eines Hinterfüllmaterials ist nicht mehr möglich.

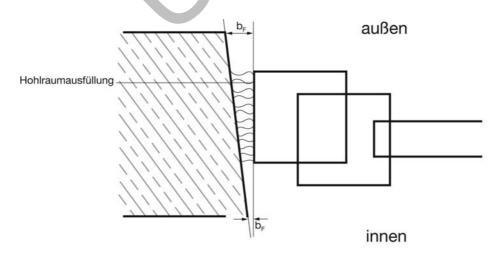


Bild 10: Bei nichtparallelen Fugenflanken kann die Mindestfugenbreite unterschritten werden (hier auf der Innenseite).

Seite 17 von 45

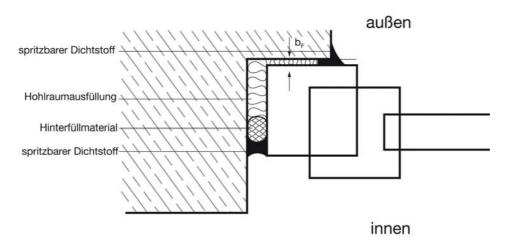


Bild 11: Zu geringe Fugenbreite b_F (\leq 10 mm) auf der Außenseite. Der Dichtstoff wird in seiner ZGV überfordert.

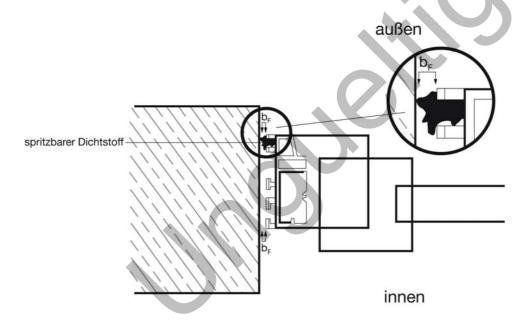


Bild 12: Ist bei fehlendem Nutabdeckprofil oder fehlender Abdeckleiste am Fensterprofil keine fachgerechte Haftfläche vorhanden, kann keine fachgerechte Fugendimensionierung eingehalten werden. Es kommt zu Schäden im Dichtstoff.

Seite 18 von 45

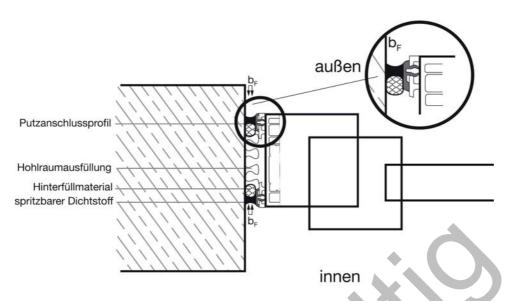


Bild 12.1: Der Einsatz eines Nutabdeckprofils ermöglicht eine fachgerechte Fugendimensionierung.

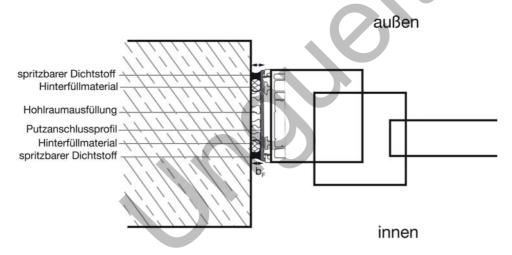


Bild 12.2: Einsatz eines Abdeckprofils ermöglicht eine fachgerechte Fugendimensionierung innen und außen

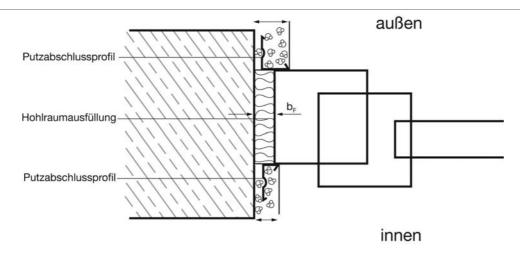


Bild 13: Keine fachgerechte Fugenausbildung möglich aufgrund von Planungsfehlern in Bezug auf die Koordination der Gewerke. Lösungsmöglichkeit mit spritzbaren Dichtstoffen siehe Bild 6.

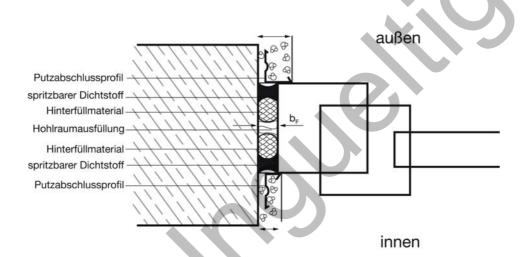


Bild 13.1: Fachgerechte Fugenabdichtung vor dem Verputzen des Baukörpers

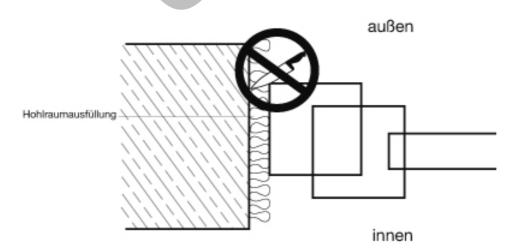


Bild 14: Nicht fachgerecht ausgeschäumte Fugen.

Bei vollständigem Ausschäumen (Überquellen) des Montageschaums ergeben sich Verunreinigungen der Haftflächen. Ein Abschneiden mit Werkzeug und Abkratzen der Haftflächen ist technisch nicht ausreichend. (Nähere Hinweise siehe Punkt 6).

6 Die Hohlraumausfüllung mit Dämmstoffen

Aus Gründen des Feuchte-, Schall- und Wärmeschutzes müssen die Fugen im Funktionsbereich umlaufend ausgefüllt werden. Dies ist auch in Bezug auf die Anforderungen der EnEV notwendig.

Als Werkstoffe werden Mineralwolle, Schaumstoffbänder, Kork, Flachs und vor allem PUR-Montageschäume eingesetzt.

Der Auftragnehmer kann den Dämmstoff für die Dämmung der Fuge zwischen den Fenstern/Außentüren und dem Baukörper wählen, wenn es die Vertragspartner nicht anders vereinbart haben.

Das ist in den Allgemeinen technischen Vertragsbedingungen (ATV) DIN 18355 – Tischlerarbeiten – festgelegt.

Die ATV sind als Bestandteil der VOB, der Vergabe- und Vertragsordnung für Bauleistungen, Grundlage für alle öffentlichen Bauvorhaben. Häufig werden sie auch bei Privataufträgen vereinbart.

Ein PUR-Montageschaum aus der Dose kann somit ohne ausdrückliche Vereinbarung mit dem Auftraggeber eingesetzt werden.

Der ausführende Betrieb kann also entscheiden, welcher Dämmstoff eingesetzt wird, wenn der Auftraggeber eine Festlegung getroffen hat.

PUR-Montageschäume werden im Fensterbau auf Grund ihrer guten Dämm- und Fülleigenschaften und der rationellen Verarbeitungsweise bevorzugt verwendet. Die Wahl des Dämmstoffes darf den Bauablauf allerdings nicht beeinträchtigen.

Dämmmaterialien sind allerdings nicht in der Lage, Bauteilverformungen auszugleichen und zur Sicherstellung der erforderlichen Luftdichtheit alleine nicht ausreichend. (siehe Punkt 10.2.4)

Besondere Hinweise:

Bei Einsatz von PUR-Montageschäumen dürfen die späteren Haftflächen für Dichtstoffe nicht durch überquellenden Schaum verunreinigt werden (siehe Bild 17). PUR-Schaumreste sind nicht restlos von den Haftflächen entfernbar und beeinträchtigen die Haftung der eingesetzten Dichtstoffe.

Fugen müssen so geplant und abgedichtet werden, dass der Schalldämmwert der Bauteile erhalten bleibt.

Die Fugenschalldämmung von Dämmstoffen und Dichtystemen kann durch eine Laborprüfung nachgewiesen werden.

Nähere Angaben zu Fugenschalldämm-Maßen der einzelnen Dichtsysteme sind dem Leitfaden zur Montage von Fenstern und Haustüren, Technische Richtlinie Nr.20 des Glaserhandwerks zu entnehmen (siehe Seite 67. Tabelle 3.8).

Seite 22 von 45

7 Einstufung und Qualitätsanforderungen der Dichtstoffe nach DIN EN 15651-1

Nach der harmonisierten europäischen Norm DIN EN 15651-1 werden Dichtstoffe für Fassadenelemente als Typ F bezeichnet.

Damit gilt dieser Teil der DIN EN 15651 u.a. auch für die Anschlussfugen an Fenstern und Außentüren gemäß IVD-Merkblatt Nr.9.

7.1 Klassifizierung der Dichtstoffe nach DIN EN 15651-1

Nach DIN EN 15651-1 werden Dichtstoffe nach folgenden Klassen eingeteilt:

- 25LM (LowModulus/niedriger Dehnspannungswert)
- 25HM (HighModulus/hoher Dehnspannungswert)
- 20LM
- 20HM
- 12,5E (Elastisch)
- 12,5P (Plastisch)
- 7,5P (Plastisch)

7.2 IVD - Qualitätsanforderungen im Vergleich zur DIN EN 15651-1

Die DIN EN 15651-1 stellt Mindestanforderungen an die jeweilige Dichtstoffqualität, um die Sicherheit der Fugenabdichtung zu gewährleisten.

Auf Grund langjähriger Erfahrungen in der Praxis in Bezug auf die vorhandenen Fugenkonstruktionen, Bautoleranzen, Belastungen auf die Fuge und Dichtstoffqualitäten sind die Qualitätsanforderungen des IVD in diesem Merkblatt an einzelne, allerdings wesentliche Eigenschaften höher als in der DIN EN 15651-1 verlangt.

Qualitätsmerkmal	IVD	DIN EN 15651-1		
Klassifizierung	Innenfugen: min. 12,5E	Keine Differenzierung		
	Außenfugen: 25LM	nach innen und außen.		
	25HM	Zugelassen sind auch		
		die Klassen		
		12,5P und 7,5P		
Zulässige	Innenfugen: 12,5 % Keine Zuordnung			
Gesamtverformung	Außenfugen: 25 %			
Volumenschwund	≤ 10 %	≤ 10 % 25LM/25HM		
		20LM/20HM		
	bei	≤ 30 % 12,5E		
	Dispersionsdichtstoffen			

Seite 23 von 45

	auf Wasserbasis	≤ 25 % 12,5P
	≤ 25 %	≤ 25 % 7,5P
Anstrichverträglichkeit	Prüfung nach DIN 52452- 4, A1 und A2	Keine Anforderung
Überstreichbarkeit	Prüfung nach DIN 52452- 4, A3	Keine Anforderung
Verträglichkeit mit anderen Baustoffen	Prüfung nach DIN 52452-	Keine Anforderung
Regenbeständigkeit von frisch verarbeitetem Dichtstoff	Prüfung nach DIN 52461	Keine Anforderung

Die Erfahrungen in der Praxis zeigen, das insbesondere im Bereich von Fenstern und Außentüren eine hohe Belastung durch Dehn-/Stauchbewegungen gegeben ist. Das liegt an den unterschiedlichen Einbaugrößen der Bauelemente und vor allem auch an den häufig zu schmal dimensionierten Fugen.

Aus diesem Grunde sind die Qualitätsanforderungen des IVD, die Klassen 25LM und 25HM vorzuschreiben, d.h. eine Zulässige Gesamtverformung von 25 % festzulegen, von großer Wichtigkeit.

Die Freigabe anderer Klassen und eine geringere ZGV führen zu hohen Risiken und Unsicherheiten beim Verarbeiter.

Ein erhöhter Volumenschwund bei nicht wässrigen Dichtstoffsystemen führt im Laufe der Einbauzeit zu Verhärtungen, Reduzierung der ZGV und zur Gefahr von Flankenabrissen oder Kohäsionsschäden im Dichtstoff.

Fenster bestehen aus den unterschiedlichen Werkstoffen Holz, Metall und Kunststoff.

Die Kenntnis der Verträglichkeit mit anderen Baustoffen und die Verträglichkeit mit vorhandenen und/oder nachfolgenden Beschichtungssystemen ist eine wesentliche Voraussetzung, um den richtigen Dichtstoff einsetzen zu können.

Der Vergleich der Qualitätsanforderungen zeigt also die Notwendigkeit des höheren Qualitätsniveaus des IVD gegenüber der DIN EN 15651-1.

8 Die Dichtstoffe

8.1 Allgemeines

Dichtstoffe müssen alle auftretenden Dehn-, Stauch-, Scher- und Schälbewegungen in den Anschlussfugen aufnehmen.

Die Außenfugen müssen dicht sein gegen Schlagregen und Wind.

Die raumseitigen Fugen müssen luftdicht sein.

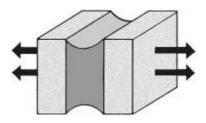


Bild 15 Dehnung

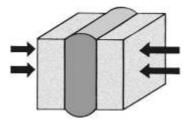


Bild 16 Stauchung

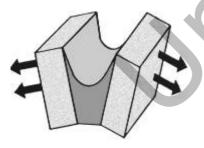


Bild 17: Schälung

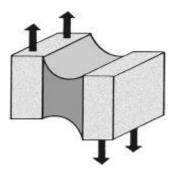


Bild 18: Scherung

Seite 25 von 45

Sie sind entsprechend den Tabellen 3 und 4 auf den Seiten 12 und 13 zu dimensionieren. Die Luftdichtheit muss durch eine dauerhafte Haftung an den angrenzenden Bauteilen sichergestellt sein.

Die Verarbeitungsrichtlinien der Dichtstoffhersteller sind zu beachten.

8.2 Dichtstoffauswahl

Nach DIN EN ISO 11600 werden Baudichtstoffe in verschiedene Klassen eingestuft.

Klasse	Bewegungsvermögen (Zulässige
	Gesamtverformung)
7,5 P	7,5%
12,5 P	12,5%
12,5 E	
20 LM	20 %
20 HM	
25 LM	25 %
25 HM	

Tabelle 5: Klassifizierung von Baudichtstoffen nach DIN EN ISO 11600

LM - Low Modulus (= Niedriger Dehnspannungswert)

HM - High Modulus (= Hoher Dehnspannungswert)

E - elastisch

P - plastisch

8.3 Anforderungen an die Dichtstoffe

Die spritzbaren Dichtstoffe müssen je nach Untergrund bzw. angrenzenden Baustoffen folgende Anforderungen erfüllen:

1. Bei Einsatz im Außenbereich

elastisches Verhalten mit einer ZGV von 25% gemäß IVD-Merkblatt Nr. 2 konform mit DIN EN ISO 11600-F - 25 LM (niedriger Dehnspannungswert) bzw. DIN EN ISO 11600-F 25 HM (hoher Dehnspannungswert) in Abhängigkeit vom Untergrund

Erläuterungen:

Für bauseitige Untergründe mit hoher Eigenfestigkeit (z.B. Beton, Granit, PVC, Metalle, anodisch oxidiertes Aluminium, Klinker, Putzleisten) sind hochmodulige Dichtstoffe der Klasse 25HM oder niedermodulige Dichtstoffe der Klasse 25LM einsetzbar. Für bauseitige Untergründe mit geringerer Eigenfestigkeit (z.B. diverse Putze, Porenbeton,

Für bauseitige Untergrunde mit geringerer Eigenfestigkeit (z.B. diverse Putze, Porenbett WDVS) sind niedermodulige Dichtstoffe der Klasse 25LM zu bevorzugen.

2. Bei Einsatz im Innenbereich

elastisches Verhalten mit einer ZGV von ≥12,5 % gemäß IVD-Merkblatt Nr. 2

Seite 26 von 45

konform mit DIN EN ISO 11600-F-12,5E

Die Dichtstoffprüfung nach DIN EN ISO 11600 umfasst verschiedene Materialprüfungen und spezifiziert wichtige Eigenschaftsparameter der Dichtstoffe. Neben diesen Anforderungen der DIN EN ISO 1160 werden zusätzlich die in Tabelle 6 aufgeführten Anforderungen an die Dichtstoffe gestellt.

Darüber hinaus hat der Dichtstoff folgende Grundvoraussetzungen zu erfüllen:

- einwandfreie Haftung auf den beteiligten Baumateralien, ggf. mit Primer (Haftvermittler)
- · klebfreie Oberfläche im Gebrauchszustand
- Witterungsbeständigkeit (Regen, Sonnenlicht UV)-Beanspruchung
- Standfestigkeit bis zu einer Breite der Fuge von 30 mm

	Eigenschaft			offe auf Dispersionsbasis le anderen Dichtstoffe Prüfung nach	Anforderung
6.1	Konformität mit DIN EN ISO 11600		х	DIN EN ISO 11600-F Prüfverfahren B	Dichtstoffe für den Außenbereich (ZGV 25 %)
				Trägermaterial: Aluminium oder Beton M1	Klasse 25LM oder Klasse 25HM
					Dichtstoffe für den Innenbereich (ZGV ≥ 12,5 E):
					Klasse 25LM oder
				/)	Klasse 25HM oder
					Klasse 20LM oder
					Klasse 20HM oder
				Klasse 12,5E	
					(siehe auch IVD-Merkblatt Nr. 2)
6.2	Zulässige Gesamtverformung	х		Herstellerfestlegung gemäß IVD-Merkblatt Nr.2	Dichtstoffe für den Außenbereich: ZGV = 25 %
	(ZGV)				Dichtstoffe für den Innenbereich (ZGV ≥ 12,5 %)
6.3	Regenbeständigkeit von frisch verarbeitetem Dichtstoff	Х		DIN 52461	Nach Empfehlung des Herstellers
6.4	Verträglichkeit mit	х	х	DIN 52452-1	Keine schädigende
	angrenzenden Baustoffen			Prüfkörper z.B. aus Weißzement, Naturstein (je nach Untergrund)	Wechselwirkung

6.5	Baustoffklasse	x	х	Klassifizierung nach DIN 4102- 4 oder Prüfung nach DIN 4102- 1	B2 oder B1
6.6	Anstrichverträglichkeit	х	х	DIN 52452-4 Beanspruchung nach A1 und A2 Prüfung mit den in der Praxis eingesetzten Beschichtungen	kein Haftverlust nach 24h, keine feststellbaren Mängel nach DIN 52452-4 Teil 4 (siehe auch IVD-Merkblatt Nr. 12)
Wenn	vom Auftraggeber geford	lert, n	ach	Rücksprache mit dem Dichtsto	off-Hersteller:
6.7	Überstreichbarkeit		x	DIN 52452 Teil 4 Prüfung mit den in der Praxis eingesetzten Beschichtungen Beanspruchung nach A3 Prüfdehnung entsprechend der ZGV des Dichtstoffes	keine feststellbaren Mängel nach DIN 52452-4 Teil 4 sowie IVD-Merkblatt Nr. 12 Angabe: Überstreichbar mit (genaue Bezeichnung der Beschichtungen)

Tabelle 6: Prüfungen und Anforderungen an spritzbare Dichtstoffe. Im Innenbereich sind Dichtstoffe mit einer ZGV ≥ 12,5 % einzusetzen, im Außenbereich müssen die Dichtstoffe eine ZGV von 25% aufweisen.

Seite 28 von 45

9 Die Hilfsmittel

9.1 Hinterfüllmaterialien

Das Hinterfüllmaterial muss eine gleichmäßige, möglichst konvexe Begrenzung der Fugentiefe (Tiefe des Dichtstoffes) sicherstellen. Es muss mit dem Dichtstoff verträglich und darf nicht Wasser saugend sein. Ferner darf es die Formänderungen des Dichtstoffes nicht behindern und keine Stoffe enthalten, die das Haften des Dichtstoffes an den Haftflächen beeinträchtigen können, z. B. Öl, Bitumen, Teer und Reste von PUR-Montageschäumen. Außerdem darf es keine Blasen oder Verfärbungen hervorrufen. Das Hinterfüllmaterial muss im eingebauten Zustand einen ausreichenden Widerstand beim Einbringen und Abglätten des Fugendichtstoffes leisten. Deshalb sollte der Durchmesser größer sein als die Fugenbreite. Als Material hat sich geschlossenzelliges Rundprofil aus geschäumtem Polyethylen (PE) bewährt.

9.2 Glättmittel

Es dürfen nur vom Dichtstoffhersteller empfohlene Glättmittel in der vorgeschriebenen Konzentration eingesetzt werden, die neutral sind, keine Verfärbungen des Dichtstoffs verursachen und auf dem Fugendichtstoff keinen Film hinterlassen (Gefahr der Kerbwirkung durch aufreißenden Film bei Dehnung des Dichtstoffes). Das Glättmittel darf die Haftung an den Haftflächen nicht beeinträchtigen und keine Verfärbungen auf angrenzenden Bauteilen verursachen, z. B. bei Naturstein-Werkstoffen. Verarbeitungshinweise des Herstellers sind zu beachten.

10. Selbstreinigendes Glas im Fensterbau

10.1 Einleitung und Wirkungsweise

Seit einigen Jahren ist es möglich, Floatglas während des Herstellungsprozesses mit einer speziellen Beschichtung (Titandioxid) zu veredeln. Diese Schicht ist widerstandsfähig, muss nicht erneuert oder regeneriert werden und besitzt eine selbstreinigende Funktion.

Sie wirkt durch einen zweistufigen Prozess Verschmutzungen entgegen.

1. Bildung von aktivem Sauerstoff (Fotokatalyse)

Unter Ausnutzung des im Tageslicht vorhandenen UV-Lichts wird die Bildung von "aktivem Sauerstoff" ermöglicht. Dieser greift organische Verschmutzungen auf der Glasoberfläche an. Durch die Zersetzung an der Kontaktfläche zwischen dem Glas und der Verschmutzung wird die Haftung herabgesetzt und der Schmutz lässt sich besser abwaschen. Kleinere Verschmutzungen werden vollständig aufgelöst.

2. Filmbildung (Hydrophile Oberfläche)

Der zweite Teil des Prozesses läuft ab, wenn Wasser auf das Glas trifft. Es bilden sich keine Tropfen. Das Wasser verteilt sich in einem gleichmäßigen Film auf der Oberfläche und nimmt den Schmutz beim Ablaufen mit.

Im Vergleich zu einem konventionellen Glas trocknet das selbstreinigende Glas schneller und lässt keine Wasserflecken zurück.

Man bezeichnet Glas mit der Kombination aus Fotokatalyse und Hydrophilie als selbstreinigendes Glas.

10.2 Dichtstoffe in Verbindung mit selbstreinigendem Glas

In den Anschlussfugen an Fenstern und Außentüren kommen elastische Dichtstoffe folgender Rohstoffbasen zum Einsatz:

- Silicone
- Polyurethane
- Hybrid-Polymere (silanmodifizierte Polymere)
- Acrylatdispersionen
- Polysulfide

Selbstreinigendes Glas ist auf Grund seiner Oberflächenbeschichtung jedoch nicht verträglich mit Siliconen und daher auch nicht mit Silicon-Dichtstoffen.

10.3 Qualitätsanforderungen an Dichtstoffe in Verbindung mit selbstreinigendem Glas

Die Verträglichkeits- und Freigabeempfehlungen der Glashersteller sind ihren Verarbeiter-Informationen zu entnehmen. Grundsätzlich dürfen nur Dichtstoffe verwendet werden, die sowohl vom Dichtstoffhersteller als auch vom Glashersteller freigegeben werden.

Seite 30 von 45

11 Ausführung der Abdichtung

11.1 Bauliche Voraussetzungen

Die Haftflächen für die Dichtstoffe müssen so fest und tragfähig sein, dass sie die Zugspannungen aufnehmen können, die durch den Dichtstoff auf sie einwirken. Sie müssen weiterhin eben, geschlossen und glatt sein. Bauteile aus Mauerwerk müssen an den Haftflächen vollfugig hergestellt sein, die Mauersteinfugen müssen bündig abgestrichen sein. Ist dies nicht gegeben, hat ein Glattstrich vor dem Fenstereinbau zu erfolgen.

Die einzusetzenden Putze sind auf den Untergrund und den Verwendungszweck abzustimmen. Sie entsprechen im Allgemeinen der DIN 18550 bzw. DIN EN 998-1. Der Glattstrich ist eine besonders zu vergütende Leistung und muss in der Ausschreibung berücksichtigt werden. Die DIN 4108-7 weist auf diesen Glattstrich vor dem Fenstereinbau hin.

Auf den Glattstrich kann verzichtet werden, wenn die Fugenabdichtung zwischen dem Fensterrahmen und einer Putzabschlussleiste erfolgt.

11.2 Reihenfolge der Arbeitsschritte

Nach erfolgter Montage des Bauteils Fenster/Tür nach dem Stand der Technik ist folgende Reihenfolge der Arbeitsschritte bei der Abdichtung mit spritzbaren Dichtstoffen einzuhalten:

- Reinigen der Haftflächen
- Abkleben der Fugenränder
- Hinterfüllen mit geschlossenzelliger Rundschnur
- Vorbehandeln der Haftflächen
- Einbringen des Dichtstoffs
- Abziehen/Glätten der Dichtstoffoberfläche
- Abziehen der Klebebänder
- Nachglätten der Fugenränder mit möglichst wenig Glättmittel
- überschüssiges, ablaufendes Glättwasser entfernen, um Verunreinigung angrenzender Bauteile zu vermeiden

11.3 Beschreibung der Arbeitsschritte

11.3.1 Oberflächen der Bauteile im Fugenbereich

Die Haftflächen müssen eben, sauber, trocken und fettfrei sowie fest und tragfähig sein. Sie müssen ferner frei sein von solchen Oberflächenbehandlungen wie z.B. PU-Schaumresten, Anstrichen, Versiegelungen, Imprägnierungen, die das Haften und Aushärten des Dichtstoffes beeinträchtigen. Je nach Dichtstoff kann in Abhängigkeit vom Untergrund eine Vorbehandlung der Haftflächen mit einem Primer/Reiniger erforderlich sein. Die technischen Richtlinien des Herstellers sind zu beachten. Eingebrachter Mörtel zur Ausbesserung schadhafter Stellen im Fugenbereich muss ausreichend trocken und tragfähig sein, eine weitgehend porenfreie Oberfläche haben und ausreichend fest am Untergrund haften. Solche Ausbesserungen dürfen das Haften des Dichtstoffes nicht

Seite 31 von 45

beeinträchtigen. Dichtstoffe und Hilfsmittel müssen mit dem zu verfugenden Baustoff verträglich sein.

11.3.2 Vorbereiten der Fugen

Um eine optisch einwandfreie Fugenabdichtung zu erzielen, sollten die Fugenränder vor Einbringen des Dichtstoffes, soweit erforderlich, mit Selbstklebeband abgeklebt werden. Die Haftung des Fugendichtstoffes am Fugengrund ist durch Einlegen von Hinterfüllmaterial oder bei zu geringer Fugentiefe ggf. einer Trennfolie zu verhindern oder so weit einzuschränken, dass örtliche Überdehnungen oder Dreiflächenhaftung vermieden werden. Das Hinterfüllmaterial ist ausreichend fest und gleichmäßig einzubauen. An den Fugenflanken ist, falls vorgeschrieben, der zugehörige Primer gleichmäßig aufzutragen und ausreichend ablüften zu lassen.

11.3.3 Einbringen des spritzbaren Dichtstoffes

Die Richtlinien der Hersteller sind zu beachten. Die vom Hersteller vorgeschriebene Zeitspanne (Mindest- und ggf. maximale Ablüftezeit) zwischen Auftragen des Voranstrichs und Einbringen des Fugendichtstoffes muss eingehalten werden. Der Fugendichtstoff ist gleichmäßig und möglichst blasenfrei einzubringen. Durch Andrücken und Glätten ist ein guter Kontakt mit den Fugenflanken herzustellen, wobei möglichst wenig Glättmittel zu verwenden ist.

11.4 Besondere Hinweise zur inneren Abdichtung

Anschlussfugen sind innenseitig dauerhaft luftundurchlässig abzudichten. (DIN 18355 Ziffer 3.5.3.3)

Nach der vollständigen Hohlraumausfüllung muss die innere Abdichtung an Fenstern und Außentüren demnach mit geeigneten elastischen Dichtstoffen vorgenommen werden, um auftretende Bewegungen aufzufangen und die Luftdichtheit sicherzustellen.

Während die innere Abdichtung eines Fensters laut ATV DIN 18355 Tischlerarbeiten bisher unter "Besondere Leistungen" fiel, gehört diese Maßnahme künftig zu den Pflichten des ausführenden Betriebes und sollte daher im Angebot einkalkuliert werden. Ausnahme: Soll die innere Abdichtung nachträglich, also nicht im Zuge der Fenstermontage, erbracht werden, wird diese Leistung gesondert vergütet.

Alle abweichenden Leistungen müssen eindeutig im Vertrag festgelegt werden.

Seite 32 von 45

12 Dichtstoffe und Beschichtungen (Anstriche)

12.1 Verträglichkeit mit der Oberflächenbeschichtung

Die Verträglichkeit des Systems Dichtstoff/Beschichtung muss sichergestellt sein. Es darf nicht zu Verlauf- und Haftungsstörungen oder Beeinträchtigung der Trocknung der Beschichtungsstoffe kommen.

Es dürfen zudem keine Bestandteile aus dem Dichtstoff auswandern, die zu beschichtungstechnischen Schwierigkeiten führen (z.B. Farbveränderungen, Benetzungsstörungen). Der Nachweis der Verträglichkeit von Beschichtungen mit Dichtstoffen ist nach DIN 52452-4 zu führen.

12.2 Voraussetzungen an vorhandene Beschichtungen

Die Haftung des Dichtstoffs auf einer Oberflächenbeschichtung, ebenso wie die Haftung der Oberflächenbeschichtung auf dem Untergrund, muss gegeben sein. Die Verarbeitungshinweise der Beschichtungshersteller, insbesondere die Vorgaben in Bezug auf die Trocknungsbedingungen/Trocknungszeiten sind zu beachten.

Besonderer Hinweis: Bei Oberflächenbehandlungen mit speziellen Werkstoffen wie z.B. Wachsen, Ölen und Antigrafitti-Materialien kann es zu Haftungsverlusten und/oder Unverträglichkeiten kommen. Eine Rücksprache mit dem Hersteller ist unbedingt erforderlich.

12.3 Das Überstreichen von Dichtstoffen

Elastische Dichtstoffe oder Dichtstoffe, deren Dehnvermögen größer ist als das des Beschichtungssystems, dürfen nicht ganzflächig überstrichen werden. Beim Beschichten benachbarter Rahmenteile bzw. Fassadenteile ist das Übergreifen der Beschichtung auf den Dichtstoff auf maximal 1 mm zu begrenzen. Ein weiteres Überstreichen ist nur dann zulässig, wenn der Dichtstoff die Beurteilung nach DIN 52452-4 Prüfmethodik A3 erfüllt.

Seite 33 von 45

13 Übrige Anschlüsse an Fenstern und Außentüren

13.1 Schwellenausbildungen

Schwellenausbildungen sind der untere Anschluss von Außen- und Fenstertüren zum Baukörper und müssen hinsichtlich Detailausbildung, Abgrenzung der Gewerke und Baufolge geplant und mit dem Auftraggeber abgestimmt werden.

Anforderungen an die unteren Abschlüsse sind in der DIN 18195 Bauwerksabdichtungen – Teil 9: Durchdringungen, Übergänge, An- und Abschlüsse, aufgeführt.

Weitere Details sind dem Leitfaden zur Montage von Fenstern und Haustüren mit Anwendungsbeispielen, Technische Richtlinie des Glaserhandwerks Nr.20 zu entnehmen.

13.2 Abdichtungen an Fensterbänken

Die Ausführung der Fensterbank und die erforderlichen Abdichtungsmaßnahmen müssen geplant werden, da vor allem an der Schnittstelle Putz/Fassade/Fensterbank die Gefahr eines Wassereintritts besteht.

Die seitliche Anbindung der Fensterbank an den Baukörper muss regendicht und bewegungsfähig ausgeführt sein, um die thermisch bedingten Längenänderungen der Fensterbänke auszugleichen.

Zum Einsatz können hier elastische Dichtstoffe kommen, die die Anforderungen nach Punkt 7.2 dieses Merkblattes erfüllen.

Ausführliche Anwendungsbeispiele zu den Abdichtungsmaßnahmen sind dem Leitfaden zur Montage von Fenstern und Haustüren, Technische Richtlinie des Glaserhandwerks Nr.20 zu entnehmen.

13.3 Abdichtungen an Rollladenkästen und Vorbaurollläden

Ausführliche Hinweise und Ausführungsbeispiele sind dem Leitfaden zur Montage von Fenstern und Haustüren, Technische Richtlinie des Glaserhandwerks Nr. 20 (siehe Literaturverzeichnis) sowie der Richtlinie Anschlüsse an Fenster und Rolladen bei Putz, Trockenbau und Wärmedämmverbundsystem: 2005 (siehe Literaturverzeichnis) zu entnehmen.

14 Beschreibung der Dichtstoffe

Diesem Merkblatt entsprechende Dichtstoffe sind auf der Verpackung und/oder Merkblättern wie in Tabelle 7 zu beschreiben.

Tabelle 7 Dichtstoffbeschreibung (Beispiele)

1.	Bezeichnung des Dichtstoffes	Handelsname
2.	Bezeichnung des Basiskunststoffes	Polyurethan, Silicon
3.	Anzahl der Komponenten	einkomponentig
4.	Reaktionssystem	Neutral
5.	Farbe	
6.	Inhalt in Milliliter	
7.	Bezeichnung der Produktionscharge	Chargennummer (rückverfolgbar)
8.	Haltbarkeitsdatum	Mindestens haltbar bisbei °C
9.	Warnhinweise	Andreaskreuz, Flammzeichen
10.	Entsorgungshinweise	Grüner Punkt, Interseroh
11.	Verträglichkeit mit anderen Baustoffen	Naturstein-Verträglichkeit
12.	Verträglichkeit mit Beschichtungen	A1 nach DIN 52452-4
13.	Untergrundvorbehandlung	Untergrund mit Primer ABC
14.	Verarbeitungszeit(Hautbildungszeit)	
15.	höchste und tiefste Verarbeitungstemperatur	von 5° bis 40° C
16.	Ü –Zeichen,Überwachungszertifikat	DIN 4102-B2
17.	Zertifizierungszeichen	
18.	Herstellername und Adresse	
19.	Weitere Angaben wie Mitglied- schaften in Verbänden (IVD,ift Rosenheim, VFF), ISO 9001 usw.	

Seite 35 von 45

15 Aufzeichnungen

Es ist empfehlenswert, insbesondere bei größeren Bauvorhaben, folgende Aufzeichnungen über den Arbeitsablauf vorzunehmen:

- Datum
- Bauvorhaben (Bezeichnung)
- Bauteil, Fugenmaße etc.
- Temperatur und relative Luftfeuchtigkeit
- Bezeichnung der ausgeführten Arbeiten
- Dichtstoff und Voranstrich / Primer (Fabrikat, Chargennummer)
- weitere eingesetzte Hilfsmittel, z. B. Hinterfüllmaterial, Glättmittel
- Sonstiges

15.1 Baustellenprotokoll (Fertigstellungsmeldung)

Das nachfolgend aufgeführte Muster eines Baustellenprotokolls für die Ausführung von Fugen mit spritzbaren Dichtstoffen an Fenstern und Außentüren kann auch als Fertigstellungsmeldung eingesetzt werden.

Muster - Baustellenprotokoll

für die Abdichtung von Anschlussfugen an Fenstern und Außentüren

Bauherr	Verarbeiter
Name:	Name:
Adresse:	Adresse:
Telefon: Fax:	Telefon: Fax:
	Beschreibung des Bauvorhabens
Ort:	
Bauweise:	
	Beschreibung der eingesetzten Produkte
Äußere Abo	dichtung
Produktbeze	eichnung und Chargennummer
Fugenbreite	/ Tiefe des Dichtstoffs:
Lieferant / Li	iefertermin
Bezeichnung	g des Hinterfüllmaterials:
Vorbehandlu	ung der Haftflächen / Produkt:
Seite 36 von 4	5 sionen verlieren Ihre Gültigkeit – Die aktuellste Version finden Sie unter www.abdichten de

Beginn / Fertigstellung der Verfugungen	
Funktionsebene (Hohlraumausfüllung)	
Produktbezeichnung und Chargennummer:	
Lieferant / Liefertermin:	
Innere Abdichtung	
Produktbezeichnung und Chargennummer:	
Fugenbreite / Tiefe des Dichtstoffs:	
Lieferant / Liefertermin:	
Bezeichnung des Hinterfüllmaterials: :	
Vorbehandlung der Haftflächen / Produkt:	
Beginn / Fertigstellung der Verfugung:	
Datum: Unterschrift Ba	auherr:
Der Unterzeichnende Verarbeiter bestätigt, die o.g. Abdichtung	sprodukte am o.g. Bauvorhaben
entsprechend den Empfehlungen des IVD-Merkblattes Nr.9 sac	ch- und fachgerecht eingesetzt zu haben.
Datum: Unterschrift V	/erarbeiter:

Seite 37 von 45 Vorherige Versi

16 Einsatz von spritzbaren Dichtstoffen und Kombination mit anderen Abdichtungssystemen

Aus verschiedenen Gründen, z. B. nicht fachgerechte Fugenausbildung - (siehe auch Abb. 8 - 14), kann es zu einer Abdichtung der Anschlussfugen innen und außen mit unterschiedlichen Abdichtungssystemen kommen. Die nachfolgende Tabelle zeigt die nach bauphysikalischen Grundsätzen empfohlenen Kombinationen in Verbindung mit spritzbaren Dichtstoffen.

Innenfuge	Außenfuge
spritzbarer Dichtstoff	spritzbarer Dichtstoff
spritzbarer Dichtstoff	imprägniertes Dichtungsband aus Schaumkunststoff
spritzbarer Dichtstoff	Abdichtungsfolie/-band diffusionsoffen
Abdichtungsfolie/-band diffusionsdicht	spritzbarer Dichtstoff

Tabelle 8: Kombinationsmöglichkeiten von spritzbaren Dichtstoffen mit anderen Abdichtungssystemen.

17 Ausschreibungsbeispiele für die komplette Ausführung der Bauanschlussfuge mit spritzbaren Dichtstoffen

17.1 Fenster/Außentür-Anschlussfugenbereich außen mit spritzbaren Dichtstoffen abdichten.

Pos.	Beschreibung der Leistung	Menge / m /	Einzel preis / € /	Gesamt preis / € /
1.	Reinigung der Haftflächen, des Fugenraumes und der Anschlussbereiche von Staub, Schmutz, losen Teilchen, Trennmitteln, Fremdkörpern etc.			
2.	Fugenränder mit Klebeband sauber abkleben und nach dem Glätten, vor Ende der Hautbildungszeit des eingebrachten Dichtstoffes, wieder entfernen.			
3.	Fugenraum mit geschlossenzelliger PE- Rundschnur, Durchmesser größer als vorhandene Fugenbreite, fest hinterfüllen und auf die richtige Fugentiefe fixieren.			
4.	Haftflächen mit auf den Untergrund abgestimmten Primer auftragen und ausreichend ablüften lassen (Primertabelle der Hersteller beachten).			
5.	Spritzbaren Dichtstoff mittels Fugenpistole satt und blasenfrei gleichmäßig in den Fugenraum einspritzen und Oberfläche abziehen.			
6.	Dichtstoffoberfläche mittels Glättwerkzeug und unter Zuhilfenahme einer Glättmittellösung vor Ablauf der Hautbildungszeit formgerecht glätten.			
7.	Klebeband vom Untergrund sauber abziehen und Randzone ggf. nachglätten.			

17.2 Fugenzwischenraum zwischen Außen- und Innenabdichtung mit Dämm-Material ausfüllen.

Pos.	Beschreibung der Leistung	Menge / m /	Einzel preis / € /	Gesamt preis / € /
1.	Freien Fugenraum zwischen Außen- und Innenabdichtung vollständig mit PUR-Schaum ausschäumen und auf die notwendige Fugentiefe für die nachfolgende Innenabdichtung begrenzen – oder –			

Seite 39 von 45

2.	Fugenraum mit Mineralwollestreifen ausfüllen – oder –		
3.	Fugenraum mit Schaumstoff-Füllband ausfüllen – oder –		
4.	Fugenraum mit Spritzkork o.ä. wärmedämmenden Spritzmassen ausfüllen.		

17.3 Fenster/Außentür-Anschlussfugenbereich innen mit spritzbaren Dichtstoffen abdichten.

Pos.	Beschreibung der Leistung	Menge / m /	Einzel preis / € /	Gesamt preis / € /
1.	Reinigung der Haftflächen, des Fugenraumes und der Anschlussbereiche von Staub, Schmutz, losen Teilchen, Trennmitteln, Fremdkörpern, etc.		9	
2.	Fugenränder mit Klebeband sauber abkleben und nach dem Glätten, vor Ende der Hautbildungszeit des eingebrachten Dichtstoffes, wieder entfernen.			
3.	Fugenraum mit geschlossenzelliger PE- Rundschnur, Durchmesser größer als vorhandene Fugenbreite, fest hinterfüllen und auf die richtige Fugentiefe fixieren.			
4.	Haftflächen mit auf den Untergrund abgestimmtem Primer auftragen und ausreichend ablüften lassen (Primertabelle der Hersteller beachten).			
5.	Spritzbaren Dichtstoff mittels Fugenpistole satt und blasenfrei gleichmäßig in den Fugenraum einspritzen und Oberfläche abziehen.			
6.	Dichtstoffoberfläche mittels Glättwerkzeug und unter Zuhilfenahme einer Glättmittellösung vor Ablauf der Hautbildungszeit formgerecht glätten			
7.	Klebeband vom Untergrund sauber abziehen und Randzone ggf. nachglätten.			
	Gewerksumme			

Hinweis zur Ausschreibung:

Glattstrich und Grobreinigung der Haftflächen haben bauseits im Vorfeld zu erfolgen.

Seite 40 von 45

18 Literaturverzeichnis

Energieeinsparverordnung EnEV: 4/2007

Verordnung über energieeinsparenden Wärmeschutz und energiesparende Anlagentechnik bei Gebäuden

Leitfaden zur Planung und Ausführung der Montage von Fenstern und Haustüren: 12/2006

Der Einbau von Fenstern, Fassaden und Haustüren mit Qualitätskontrolle durch das RAL-Gütezeichen.

RAL-Gütegemeinschaften Fenster- und Haustüren 60594 Frankfurt am Main

Leitfaden zur Montage von Fenstern und Haustüren mit Anwendungsbeispielen

Technische Richtlinie des Glaserhandwerks Nr.20, 4. Auflage 2007

in Zusammenarbeit mit

Bundesinnungsverband des Glaserhandwerks

Bundesverband Holz und Kunststoff

Verband der Fenster- und Fassadenhersteller e.V.

RAL – Gütegemeinschaft Fenster und Haustüren e.V.

Verlagsanstalt Handwerk GmbH, 40221 Düsseldorf

VFF-Merkblatt 12/2001

Wärmetechnische Anforderungen an Baukörperanschlüsse für Fenster.

Verband der Fenster- und Fassadenhersteller e.V.

RAL-Gütegemeinschaft Holzfenster und Haustüren e.V.

60322 Frankfurt am Main

ift-Richtlinie FE-05/2: Einsatzempfehlungen für Fenster und Außentüren

Richtlinie zur Ermittlung der Mindestklassifizierung in Abhängigkeit der Beanspruchung ift Rosenheim, 83026 Rosenheim

Richtlinie Anschlüsse an Fenster und Rolladen bei Putz, Trockenbau und Wärmedämm-Verbundsystem: 2005

Fachverband Glas Fenster Fassade Baden-Württemberg, 76189 Karlsruhe Fachverband der Stuckateure für Ausbau und Fassade Baden-Württemberg 70599 Stuttgart

Bundesverband Rolladen + Sonnenschutze.V., 53177 Bonn

DIN 1055-1 bis 9

Einwirkungen auf Tragwerke Beuth-Verlag GmbH, 10787 Berlin

DIN EN 15651-1

Fugendichtstoffe für nicht tragende Anwendungen in Gebäuden und Fußgängerwegen Teil 1: Fugendichtstoffe für Fassadenelemente Beuth-Verlag GmbH, 10787 Berlin

Seite 41 von 45

DIN 4102-1

Brandverhalten von Baustoffen und Bauteilen, Teil 1: Baustoffe, Begriffe, Anforderungen und Prüfungen Beuth-Verlag GmbH, 10787 Berlin

DIN 4102-4/A1

Brandverhalten von Baustoffen und Bauteilen, Teil 4: Zusammenstellung und Anwendung klassifizierter Baustoffe, Bauteile und Sonderbauteile; Änderung A1 Beuth-Verlag GmbH, 10787 Berlin

DIN 4108 - Beiblatt 2

Wärmeschutz und Energie-Einsparung in Gebäuden – Wärmebrücken – Planungs- und Ausführungsbeispiele Beuth-Verlag GmbH, 10787 Berlin

DIN 4109

Schallschutz im Hochbau; Anforderungen und Nachweise Beuth-Verlag GmbH, 10787 Berlin

DIN EN 12207

Fenster und Türen, Luftdurchlässigkeit, Klassifizierung Beuth-Verlag GmbH, 10787 Berlin

DIN EN 12208

Fenster und Türen, Schlagregendichtheit, Klassifizierung Beuth-Verlag GmbH, 10787 Berlin

DIN EN 12210

Fenster und Türen, Widerstandsfähigkeit bei Windlast, Klassifizierung Beuth-Verlag GmbH, 10787 Berlin

DIN EN 12219

Türen – Klimaeinflüsse – Anforderungen und Klassifizierung Beuth-Verlag GmbH, 10787 Berlin

DIN EN 13049

Fenster – Belastung mit einem weichen, schweren Stoßkörper – Prüfverfahren, Sicherheitsanforderungen und Klassifizierung Beuth-Verlag GmbH, 10787 Berlin

DIN EN 13051

Vorhangfassaden – Schlagregendichtheit – Feldversuch Beuth-Verlag GmbH, 10787 Berlin

DIN EN 13115

Fenster, Klassifizierung mechanischer Eigenschaften, Vertikallasten, Verwindung und Bedienkräfte

Seite 42 von 45

Beuth-Verlag GmbH, 10787 Berlin

DIN EN 13420

Fenster – Differenzklima – Prüfverfahren Beuth-Verlag GmbH, 10787 Berlin

DIN 18202

Toleranzen im Hochbau- Bauwerke Beuth-Verlag GmbH, 10787 Berlin

DIN 52452-1

Prüfung von Dichtstoffen für das Bauwesen; Verträglichkeit der Dichtstoffe; Verträglichkeit mit anderen Baustoffen Beuth-Verlag GmbH, 10787 Berlin

DIN 52452-4

Prüfung von Dichtstoffen für das Bauwesen; Verträglichkeit der Dichtstoffe; Verträglichkeit mit Beschichtungssystemen Beuth-Verlag GmbH, 10787 Berlin

DIN 52460

Fugen- und Glasabdichtungen – Begriffe Beuth-Verlag GmbH, 10787 Berlin

DIN 52461

Prüfung von Dichtstoffen für das Bauwesen; Regenbeständigkeit von frisch verarbeitetem, spritzfähigem Dichtstoff Beuth-Verlag GmbH, 10787 Berlin

DIN EN ISO 11600

Fugendichtstoffe - Einteilung und Anforderungen von Dichtungsmassen Beuth-Verlag GmbH, 10787 Berlin

IVD-Merkblatt Nr. 2

Klassifizierung von Dichtstoffen IVD INDUSTRIEVERBAND DICHTSTOFFE E.V.

IVD-Merkblatt Nr. 12

Die Überstreichbarkeit von bewegungsausgleichenden Dichtstoffen im Hochbau IVD INDUSTRIEVERBAND DICHTSTOFFE E.V.

Seite 43 von 45

Mitarbeiter:

Wolfram Fuchs
Dr. Edgar Draber
Dieter Fritschen
Michael Hansen
Dr.-Ing. Karl Ritter
Günther Weinbacher

Gäste:

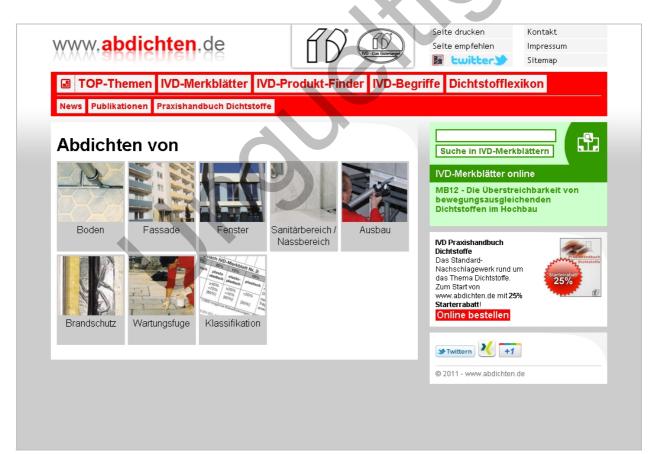
Dipl.-Holzwirt Eike Gehrts, VFF Verband Fenster + Fassade Kurt Haaf, Fachverband für Fugenabdichtung e. V. (FVF)

Preis gedrucktes IVD-Merkblatt: EUR 28,60 *

Online-Bestellung auf www.abdichten.de

*Bestellinformationen - Die Preise verstehen sich zzgl. der gesetzlichen Mehrwertsteuer sowie Bearbeitungskosten (EUR 2,50 - 4,50) und Versandkosten Inland (ca. EUR 1,45 - 6,90 bis zu einem Gewicht von 10 kg). Die Lieferung erfolgt ausschließlich auf Vorkasse - Rechnung: Sie bestellen, wir senden Ihnen die Rechnung, Sie bezahlen, und nach Zahlungseingang auf unserem Konto erhalten Sie die Lieferung.

Seite 44 von 45


Alle aktuellen IVD-Merkblätter kostenlos downloaden auf:

www.abdichten.de

Im IVD-Produkt-Finder finden Sie die empfohlenen Qualitäts-Produkte der IVD-Mitgliedsfirmen nach den IVD-Merkblättern.

Außerdem alle Informationen rund um die Baufugen-Abdichtung in den Bereichen Boden, Fassade, Fenster, Sanitärbereich und Wasserbereich.

Sowie die IVD-Begriffsuche, das komplette Dichtstofflexikon online und ständig aktuelle News rund ums Thema.

www.abdichten.de – Ihre Plattform rund um die Baufugen-Abdichtung.

Folgen Sie uns auf twitter: www.twitter.com/abdichten_de

Seite 45 von 45